Search results

Search for "micromagnetic simulation" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • Avizo Amira or the more limited Tomviz and ImageJ, as well as software from TEM manufacturers, such as the visualizer Kay-JEOL). However, none of them is focused on answering the abovementioned issues, specific to magnetic nanoscale systems. On the other side, there are micromagnetic simulation software
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

On the relaxation time of interacting superparamagnetic nanoparticles and implications for magnetic fluid hyperthermia

  • Andrei Kuncser,
  • Nicusor Iacob and
  • Victor E. Kuncser

Beilstein J. Nanotechnol. 2019, 10, 1280–1289, doi:10.3762/bjnano.10.127

Graphical Abstract
  • static and time-dependent micromagnetic simulations. Keywords: magnetic hyperthermia; magnetic nanoparticles; magnetic relaxation time; micromagnetic simulation; Introduction Magnetic relaxation phenomena in nanoparticulate systems are under intensive investigation today, especially due to their
PDF
Album
Full Research Paper
Published 24 Jun 2019

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
PDF
Album
Full Research Paper
Published 24 May 2016

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • marked with yellow arrows) are shown: The thickness of the oxidized surface layer (FeO) is around 4–5 nm. Sketch of the two-dimensional (y,z plane) geometrical shapes used in the micromagnetic simulation for a 250 nm wide Fe nanowire with a tNom of 20 nm: (a) Rectangular profile (case I), (b
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

  • Maxim E. Stebliy,
  • Alexander G. Kolesnikov,
  • Alexey V. Ognev,
  • Alexander S. Samardak and
  • Ludmila A. Chebotkevich

Beilstein J. Nanotechnol. 2015, 6, 697–703, doi:10.3762/bjnano.6.70

Graphical Abstract
  • the direction of an external field for nanostructures with s = 170 nm. To construct the scheme the experimental data Mr/Ms = f(φ) (see Figure 1a), and the micromagnetic simulation results were used. When Mr/Ms < 0, the magnetic field is applied under an angle from 70 to −70° (indicated by the blue
PDF
Album
Full Research Paper
Published 10 Mar 2015
Other Beilstein-Institut Open Science Activities